0730Z

Deprotection Methods and Techniques
Using the Senior PROM

January 1986

Cutting Edge Enterprises
Box 43234 Ren Cen Station
Detroit, MI 48243
313-349-2954 Modem 300/1200 Baud

Deprotecting Methods and Techniques
Using the Senior PROM

Table of Contgnts

Chapter Deseription Page
1 Introduction to Deprotection with the Senior PROM 2
2 Where to Begin +
3 Single Load Protection 8
4 Modified DOS Protection 17
5 Modified RWTS Protection 22
6 Disabling Minor Disk Access 26
7 Examining Protected Applesoft Basie Programs 28
8 Using COPYB to Convert Protected Programs 32

Cutting Edge Enterprises makes no warranty either express or implied with
respect to the information provided as to its fitness for any particular use.
Cutting Edge Enterprises will in no event be held liable for indirect or direct
or incidental damages resulting from any defect or omission in the information
provided. The user assumes all responsibility arising from the use of this
information and products.

This information, hardware, and software are not intended for illegal use.
Copyright 1985 by Cutting Edge Enterprises.

Cutting Edge Enterprises

Box 43234 Ren Cen Station

Detroit, MI 48243

313-349-2954 Modem 300/1200 Baud for Information and Support.

Chapter One: An Introduction to deprotection using the Senior PROM.

The Senior PROM is especially designed for allowing you to backup, view, or
modify protected software. It is not designed for ANY illegal uses. We
provide our hardware, software and documentation for archival and
educational uses only!

As with any tool, you must possess the knowledge to use it before it can work
for you! Read the Senior PROM instruction manual throughly and also read
the other documentation suggested by this chapter. If you skip these two
steps, the rest of this manual will not be as useful...

The thrust of this manual will be discussing the methods used in deprotecting
copy protected Apple programs. After doing the suggested groundwork and
reading (and understanding!) the following information, you should be able to
deprotect most any commercially protected Apple program. Of course, this
manual will not make you an instant expert on Apple copy protection, and
there are many things to learn that I ean not cover. This will be an excellent
starting point to grow from. The key to your success will be keeping an open
mind, understanding all concepts mentioned, ingenuity, and above all, practice.

Deproteecting protected programs requires several things that you should try
your best to possess. The first is a good basic understanding of the Apple
Computer and its architecture. Read your "Apple II Reference Manual (//e
only)" for very informative discussions of your //e computer. Also a very good
manual is the "DOS User's Manual" from Apple. Even better, pick up a copy of
Don Worth's "Beneath Apple DOS" (and "Beneath Apple ProDOS" for some
applications) and study it carefully. After you have done these basic things,
you are ready to start down the road of deprotection.

I can not stress the importance of reading these well written manuals, and
doing the best to understand their implications. After you have achieved the
knowledge granted by these books, you are well beyond 95% of the Apple users.

Of particular importance is the "Apple II Reference Manual (//e only)". The
most important part of this manual is chapter 5, "Using the Monitor" (page 87).
Study this chapter carefully. This chapter will deseribe many of the

monitor commands you will need to snoop protected programs. These
commands include examining and changing memory locations, moving memory
and comparing ranges of memory, and executing code. Also discussed is the
Mini-Assembler and how to enter your own machine language programs.

For the ultimate understanding of the Apple the last step is to learn the
forbidden language, 6502 Assembly language. Although this is not necessary
for a great number of deprotecting chores, any program that is the least bit
tricky will require you to understand Assembler. The reason is simple: most
everything sold today is

written in Assembler. Ninety-five percent of the programs at your local
computer store are written in Assembly language. The obvious reason for this
is that Assembler is fast, and this is very important for many business
applications and graphic games. Also, because protecting a disk on the Apple
is done at the Operating System level, the protection really has to be written
in Assembler.

For learning Assembler, I would suggest either Roger Wagner's "Assembly
Lines", or Randy Hyde's "Using 6502 Assembly Language". Both of these books
are excellent and are easy to understand for the beginning programmer.

Beyond this, the next best thing to do is to use your new found knowledge.
Write some Assembly language programs to get familiar with the language.
Instead of writing that "hello" program in BASIC, do it in Assembler. Get used
to it, and keep good notes of what you learn!

Now you're ready for the big time.... deprotecting programs. I assume you
have a good understanding of the monitor commands (list, move, verify,
execute) from reading the Apple II reference manual. Of most importance is
the "L" command to disassemble and list code presently in memory. Get
familar looking at these disassemblies since you will never have "source" code
from protected programs to examine. Therefore you will have to become
fluent in Apple disassembly. The best way to achieve this is practice, and
nothing else will substitute.

Good luck, and I am sure you find deprotection extremely educational and
helpful.

Chapter 2: Where to Begin. A discussion on the first steps to deprotecting a
program.

Before we really start digging into discussions on copy protection, I think we
should first define a few things and state the objective of this manual.

The objective is to make the average user more informed about copy
protection and how to defeat it using the Senior PROM. Copy protection is
what a publisher/author does to prevent you, the user, from making
"unauthorized copies".

The problem with copy protection is obvious: what do you do if:

- Your original disk fails?
- You need to modify the protected program for your particular
application?

Copy protection makes copies with "FID" or "COPY A" impossible, and many
users save turned to programs such as "Locksmith" to make back-ups. This is
not defeating the copy protection, but merely makes a clone of the entire disk
and its protection. The disk is still un-modifiable, and consistent copies are a
problem and time consuming. Many people consider this unacceptable.

I will be discussing "deprotection” methods using the Senior PROM, as opposed
to copying methods using Locksmith. Deprotection is defined as the
techniques used to capture a protected program onto a normal DOS 3.3 disk
that can be copied in a convenient manner, such as with COPY A or FID.

The primary objective of this manual is to provide you with the knowledge to
deprotect programs using the Senior PROM. Of course, using this information
for illegal and otherwise illicit uses is not the intent of this series, and is
written only for your amusement and education. Now that the objectives are
clear, lets begin...

The subject of deprotecting programs is truly a humongous one. There are
probably thousands of ways to make a disk "uncopyable". This provides us with
a mental puzzle that can (and probably will) consume much of your time and
effort. But of course, the rewards are worth it not only in the obvious returns,
but also in the gain in knowledge of programming and your Apple in general. If
you enjoy puzzles and treasure hunts, you will enjoy deprotecting programs.

Part of any puzzle is to find the first piece or starting point. This is no
exception in the puzzle of protection either, and is probably the hardest step
for the novice. There is no substitute for experience, but there are some
general guidelines to follow and some real dead giveaway clues to look for.

Protection generally falls into one of three categories. The first is protecting
a single program in memory and/or on disk (called the "single load" protection).

The second is protecting a set of programs by using a modified DOS (called the
"modified DOS" protection). The third is using a loader or a modified RWTS
(read-write-track-sector) for protection (called "Modified RWTS protection").
Since there are so many ways to protect programs in the above three manners,
I will be mentioning general techniques that you may apply to just about any
protected program.

First, you must be able to recognize which category a particular program fits
into. The remainder of this chapter will discuss this. After determining the
type of protection used, you should refer to the particular chapters on
deprotecting that protection type.

Recognizing the Single Load Protection:

This type of program is probably the easiest type of protection to deal with,
but unfortunately is being seen less and less every day. Single load programs
are loaded in from disk only once, and then run from memory with no or very
little disk access. Several years ago just about all games on the Apple fell into
this category, and deportecting these programs was not that difficult.

The identification of these programs is simple: When the program boots and
loads into memory and starts running, there is no additional disk access. (Disk
access is when a program turns the disk drive on and read some data from
disk. Usually this is for loading additional program segments or game levels.)

Programs that first load a title page, turn off the drive, and then wait for you
to press a key and load the program can also be single load if no other disk
access is encountered. An example of this is Penguin Software's arcade
games. Even though the drive turns off and then on after showing a title page,
this is a single load program (title pages just don't count!).

In addition, programs that save high scores to disk or do only some other
minimal disk access are also single load. Many times they are not actually
loading any data but are checking to see if the original disk in still in the drive
or are writing a high score to disk. An example of this is most Penguin arcade
games and many of the Electronic Arts games (One on One, Axis Assassin,
ete.). This small disk accesses can almost always be defeated in some manner.

Usually the final step in deprotecting a single load programs is converting the
program into a single (or small number of) file(s). From normal DOS the
resulting file can then be run. Most of you have seen this type of program.

Recognizing the Modified DOS Protection:

Probably the most popular protection scheme is the Modified DOS Protection.
These programs load much like a disk that you create (with the command INIT
HELLO). The difference is that the publisher/author have modified DOS
slightly to read and write to in their particular copy protection scheme.

Publishers like to use this protection scheme because it is easy to incorporate,
easy (and cheap) to make multiple copies for retail sales, and does a good job
at discouraging the Locksmith owners from making copies.

Fortunately, deprotecting modified DOS disks are generally more systematie
and sure-fire than the other types of protection. Also, there are many
programs already developed to aide you in deprotecting modified DOS

programs.

There are some real dead giveaways to identifying whether a protected
program is using a modified DOS. The foremost is the appearance of a BASIC
prompt on the screen during the boot (the "|" prompt). Some protectors have
started to bypass the routine that prints the prompt, but you can still guess
there is a modified DOS present from the sound of the boot.

The sound of the boot is very important. Initialize a normal DOS 3.3 disk and
boot it a couple of times. Listen to your disk drive as the disk boots. You will
first here the drive chatter (this is making sure that the drive is ready to read
track zero of the booted disk). Right after the chatter, the disk drive head
will swing out to track two and read to track zero (most drives click each time
the head swings to another track. Listen for the click.). This is the process of
loading DOS into memory. This process takes about 3 seconds at the most.
Next you will here the drive head swing out to the catalog track to locate the
"hello" program and load and run it.

If upon booting a protected disk you hear the above sounds, there is a 99
percent chance the program uses a modified DOS. If a BASIC prompt appears,
it is a 100 percent chance a modified DOS is present. I have devoted a chapter
to this type of protection.

Recently, ProDOS is being used in protection. This is really a derivative of
the modified DOS protection and is covered in that chapter.

(=

Recognizing the Modified RWTS Protection:

The use of a modified RWTS is a simular to the Modified DOS protection
scheme. RWTS is a portion of DOS that does the actual reading and writing of
particular sectors of a disk. The main difference between a modified DOS and
a modified RWTS is that a DOS interacts with the disk on a file basis. A
RWTS interaects with the disk on a track and sector basis, and therefore actual
files (as grouped in a directory or eatalog) may not exist.

Modified RWTS (or "loaders" if they only read and do not write to disk) are
popular for multilevel games that must read from disk. Since RWTS occupies
a much smaller portion of memory than DOS, the actual program that is being
protected can be larger than if an entire DOS is being used. The reason is DOS
must manage files and then do track and sector reads using the file lists.
RWTS only worries about tracks and sectors doesn't care if they are grouped
into files.

(NOTE: many single load programs use a modified RWTS to do the initial
loaing of the program. If there is no more disk access after the initial load,
the program falls into the "Single Load Protection" category, not "Modified
RWTS Protection. [f additional disk access is encountered, it is considered a
Modified RWTS Protection.).

The method of deprotecting these disks is quite similar to deprotecting
modified DOS disks. This is because RWTS is merely a portion of DOS.

To identify a disk as using a modified RWTS is fairly simple. If the boot does
not sound like a modified DOS boot (as described in the Modified DOS
protection above) and a BASIC prompt does not appear, and there is additional
disk access during the program, the protection may be using a modified

RWTS. Basically, if the program does not fit into the other two categories, it
is probably a modified RWTS protection. (Some other alternatives are a
modified PASCAL operating system, like the PFS and Wizardry series use, or a
ProDOS-based protection scheme).

Examples of programs using this kind of protection are programs like DB
Master, all the Designware programs, Zaxxon, Miner 2049'er, Donkey Kong,
and Jungle Hunt. I have devoted a chapter to this type of protection.

Conclusion:
Now that you can identify what type of protection is being used, refer to the

chapter that discusses it. This will outline the methods used to deproteect that
particular type of program.

Chapter 3: Deprotecting Single Load programs.

Single load protection encompasses those programs that are loaded in only
once, and then run strietly from memory with no disk access. Some minimal
disk access is allowed, for example, to save high scores or to check for the
original disk, but ultimately, these will be defeated or altered to allow us to
save our program into a normal DOS binary file.

To deal with this type of protection you will have to have some knowledge of
ASSEMBLY language and some good working knowledge of the Apple's monitor
commands. In addition, the ability to decipher the monitor's "disassembly"
will prove invaluable. These tools will help a great deal since by the nature of
the material, the rules are written in deceiving and unecommented 6502
machine language. There is no substitute for experience, but the only way to
gain experience is to practice, so let's begin.

First let's outline the steps we want to follow in deproteeting a single load
program:

1) Find the starting address. This is the address that will always restart the
program.

2) Figure out what parts of memory should be saved (we can not save >>all<¢
of memory, so we must figure out what is really needed and what is not).

3) Save the program as a normal DOS binary file (B file) that includes all of
the needed memory.

Step 1: Finding the Starting Address:

To further explain what a starting address is, remember when you are using
"FID" from your DOS 3.3 System Master and you mistakenly reset from the
program? Well many people get their system master disk back out and BRUN
FID again to run the program. This is really unnecessary since all one must do
is to enter the monitor and type the starting address with a "G" at the end (the
"G" is the monitor's go or execute command):

ICALL -151
*803G

The starting address of $803 will always restart FID, and this is what we want
to find in our protected program.

(Now some of you may be asking how [knew $803 was FID's starting address.
A normal DOS file's starting address is kept at $AA72 and $AA73, in
backassward order of course. After BRUNing or BLOADing FID, type:

*AA60.AAT3

The first two bytes listed are the length of the file, and the last two bytes are
the starting address. Remember they are listed backwards, so $0803 will be
listed as 03 08.)

So boot a protected program, activate your Senior PROM and press CTRL -
RESET, and then the DELETE key (giving us the "*" prompt). Now we can test
our starting address by typing the address we think it is followed by a "G" to
start execution at that address.

In the old days the starting address was even numbers like $800, $900, or
$6000. It is definitely still worth checking these address as many people find
it more convenient to program with these starting addresses.

Usually, you will be disappointed by your first attempts at guessing the
starting address. Therefore, we need a more structured method for finding the
programs's starting address (after all, there are more than 64,000 locations to
choose from!).

Sinece many programs first display a hi-res title page before starting the
program, a good place to start looking is the series of instruetions that turn on
the graphie pages. The graphic pages are turned on and off by a series of "soft
switches" in the $C050 range. It doesn't matter what you do to these locations
as long as you access them in some way:

C050: Display graphie mode

CO51: Display text mode

C052: Display all text or graphics
C053: Mix text with graphies

C054: Display primary page (page 1)
C055: Display secondary page (page 2)
C056: Display lo-res graphics mode
CO057: Display hi-res graphics mode

This means that the following commands will have the same effect of turning
on the graphics mode:

LDA $C050 STA $C050 EOR $C050
BIT $C050 CMP $C050 ROL $C050

and if you understand the indexing from ASSEMBLY language:

LDY #$71
AND $BFAF,Y

However, most reasonable people have established the chore by writing:
LDA $C057
LDA $C054
LDA $C052

to turn on the graphies page.

Now to find these instruction you can page through memory with the monitor's
"L" command or you can use the Sector Editor's Find command and search for
"50 CO" (refer to the Senior PROM documentation for how to use the Sector
Editor's Find command).

After you find the code, trace backwards looking at the code just before it.
Try and find an absolute end for the previous code before such as an RTS or a
JMP. Your starting address should be immediately after the absolute end of
the previous code.

In addition, the code that turns on the hi-res page may just be a small
subroutine, so you may have to search for a JSR to that location and trace
backwards to find the starting location. Once again, the Sector Editor will
help you in this task.

When you think you have found the starting address, test it with the "G"
command (i.e. "9000G").

If you fail, reload the program and start over. It is a good idea to always
reload the program since the code you executed might have disturbed some
other memory locations. It is always best to start fresh.

Also keep in mind that that the hi-res routine may have been accessed by a
"branch"” instrucetion. These are conditional jumps that ean reach $7F locations
away in either direction. So search about 60 instruetion before and after your
the possible start. If you fine a BEQ, BNE, BPL, BCC, or BCS to your starting
address, trace that routine back to its beginning and try it.

In addition, try looking for a JMP to your starting location with the Senior
PROM's Sector Editor. This may produce another routine to trace back and
find the starting address.

Keep in mind if you have to trace back more than two steps, you are probably
in the wrong area of memory and on the wrong trail.

In addition, many programs wait for a key press before starting the program.
You may also search for the code that accesses the keyboard. Usually the
code looks like this:

LDA $CO010 Clears the keyboard

LDA $C000 Get a keystroke

BPL $XXXX If no key, goto $XXXX

JMP $START keystroke found, jump to start

To find this code use the Sector Editor to search for the sequence "00 C0".

This is very common code and often produces a starting address. Another very
good way of finding a starting address is to find the key that re-starts the
program. Many times games use CTRL R to end the current game and to start
a new one. This almost always produces a good starting address. Usually the
code looks like this:

10

LDA $C000 Check for keystroke

BPL $XXXX No key, JMP to next stage
CMP #$93 Compare to CTRL S (sound)
BNE NEXT1 Not equal, try another

JMP SOUND If equal, goto sound

CMP #$92 Compare to CTRL R

BNE NEXT2 Not equal, try another

JMP START If equal, goto start

CMP #$9B Compare to ESCAPE

BNE NEXT3 Not equal, try another

JMP HALT If equal, halt program

Notice after the CMP #$92 (compare to CTRL R) the jump to a loeation. This
is most likely your starting address. This address could have also been jumped
to by means of a BEQ too, so keep that in mind.

Test your new found starting address by turning on the hi-res page manually
(the game might not do it for you at that starting address), and then type the
starting address followed by a "G". Note that after you turn on the hi-res
page, you can no longer see what you are typing on the sereen, so type
carefully. For example:

*C050 (you will be blind after you type RETURN, so type carefully)
*C087 (turn on hi-res graphies)

*C055 (if using page 2 graphiecs)

*Start address G

If these two described processes do not provide you with a starting address,
there are a couple of other things to look for. The first is a "jump table",
which more experienced programmers generally use. This looks like this:

JMP $4050
JMP $4000
JMP $900

JMP $931A

Try any of these as starting locations, but you are kinda poking in the dark
with this one. In addition, the above JMP's could also be JSR's too. Just try
executing the beginning of the jump table in that case.

Lastly, a lot of programs start by setting up a bunch of zero page locations
with parameters and so forth. This generally looks like this:

11

LDA #$00

STA $03
STA $05
STA $07
LDA #$01
STA $7F
LDA #$80
STA $FE
STA $FF

Try starting the program with a starting address as the beginning of the zero
page set-up routine.

As you can see, finding the starting address can be a time consuming endeavor,
and may not even produce any results. Do not be discouraged since practice
will make it easier.

If you can not find the starting address, it may be because the program uses
some "volatile” memory location that get distroyed when you hit reset. When
you try and re-start the program, it sees these location do not contain what
they should, and refuses to run. These locations include the text page ($400 to
$7FF) and pages $01 and $02, and some zero page locations. The most obvious
clue to the use of volatile memory is when you reset into the monitor the text
page is filled with "garbage". This garbage is actually code displayed in ASCII
form across the text page. When you type something, it is echoed on the text
page (and hence memory from $400-7FF). Ordinarily, it's impossible to

- capture this memory without some additional hardware.

The Senior PROM has the ability to handle this. Use the option from CTRL -
RESET that moves $00-8FF up to $2000-28FF. This Senior PROM reset option
is especially designed to allow you to view these volitile memory loeations.
The volatile memory is moved up to $2000-28FF, so you can easily see what
was on the text page by typing "2400L".

Occasionally, the author will be kind enough to provide the starting address for
us! Note on some program that a normal Apple //e reset will restart the
program. This is a blessing, since all we must do is to activate the Senior
PROM, reset into the monitor, and check locations $3F2 and $3F3 to find the
starting address. These two locations will point right to the starting address,
in backwards order. For example, if you reset into the monitor and type
"3F2.3f3" and see "00 60", the starting location is $6000. Many authors
provide a program restart on a normal reset, so look for it. It's the easiest
way to find the starting location.

If all else fails, and you can not find the starting address, there is one more
choice: NMI. The Senior PROM will allow you to use the NMI (Non Maskable
Interrupt) to interrupt the program and restart it without knowing the actual
starting location. This technique will allow you to stop the program and
restart it right where you left off. The use of the NMI is throughly described
in the Senior PROM documentation, and will not be reveiwed here.

12

Step 2: What Partion of Memory to Save:

Now that the starting address of the protected program has been found (or you
are using the NMI), the next step is to determine what portions of memory
should be saved in the final binary file. We cannot save all of the 64K memory
since we must use DOS to load the program back in. Basically, we have $8E
es of memory to play with and save as a maximum, out of the available
FF pages that exist. NOTE: There are ways of saving more that $8E pages of
memory in a standard Bfile, but this is beyond the scope of this manual.

With our memory limitations in mind and the starting address at hand, we can
find what portions of memory we need to run our program. The best way to
start out is to turn your Apple on, and use the Senior PROM to put a memory
test pattern in all 64k of RAM. This way, after the program is loaded, we can
examine memory and see what is loaded in by the program.

Now boot your protected program by pressing CTRL - RESET, and then the
reboot key. As the drive recalibrates, deactive the Senior PROM (it's not
always necessary to deactive the Senior PROM when booting a disk, but it's
highly suggested as some programs will not load properely with it activated).

After the program is loaded, activate the Senior PROM, reset into the monitor
and get the inspector up by typing "D0O00G". Don't go through the normal
Senior PROM menu system as this will write over memory $B700-BFFF with
RWTS (unless you use the "protect RWTS" option). Now search through
memory for blank pages using the "¢" and ">" keys. Write down on paper any
blank memory areas you find (don't try and remember them, just write them
down).

Alternatively, you ean flip through memory using the monitor "L" command,
but this will take an ineredible amount of time. Also you can use the Sector
Editor's Disassembly command (CTRL D).

Also be aware of "garbage memory" and shape tables". Garbage memory is
unused junk that does not disassemble. Shape tables look like garbage memory
but actually contain graphic shapes and the such. Write down these suspect
garbage memory areas on paper.

Also check how the program starts. Does it turn on the hi-res page and use
what is already there, or does it re-draw the hi-res page? If it re-draws, you
do not have to save that hi-res page (either $2000-3FFF or $4000-5FFF).
Write that down too.

The best way to check to see if a memory area is used is to load the program
and reset, zero the suspect memory area, and restart the program. Run the
program for a while and if it works OK, then that memory area is not needed.
IMPORTANT: BE SURE TO CHECK ALL FACETS AND LEVELS BEFORE
DISCARDING A MEMORY RANGE.

The best way to zero a memory portion is to use the monitor's move

command. For example, say you want to test to see if hi-res page 1 is
re-drawn ($2000-3FFF). From the monitor prompt type:

13

*2000:0
*2001<2000.3FFFM

This will zero out $2000 to $3FFF. Now restart the program and check it out.
Make sure you keep careful notes of what is needed and what is not. WRITE
DOWN EVERYTHING ON PAPER. AFTER YOU HAVE FOUND ALL NEEDED

MEMORY AREAS, ZERO ALL UN-NEEDED AREAS AND RUN THE
PROGRAM FOR A WHILE TO VERIFY.

Step 3: Saving the Program as a Bfile:

Now that you have found the starting address and what portions of memory the
protected program encompass, you have to get the memory portions to a
standard DOS 3.3 disk. The best way to do this is to use the Senior PROM
reset option that moves all of main 64k RAM to auxilary 64k RAM. Then you
ean boot a DOS disk and use the Memory Management Menu options to move
memory back to main RAM and save it to disk.

In saving small portions of memory to disk, I should also note the importance
of a "48k Slave disk". Booting a 48K slave disk does not disturb memory from
$900 to $95FF. The best way to make a 48K slave disk is to boot any normal
DOS 3.3 disk (fast DOS with INIT preferred such as Pronto-DOS by Beagle
Bros, or Diversi-DOS by Diversi), and type:

IFP
JINIT HELLO

The disk created will be a 48K slave disk. Don't use any "hello" program as
this might load over memory between $900 and $95FF.

A slave disk will give us a total of $8D pages of memory undisturbed when
booted (a page of memory is $100 hex locations or 256 decimal locations). If a
program is bigger than $8D pages of memory or doesn't lie in the $900-95FF
range, use the Senior PROM's memory-move option that moves main 64k
memory to Aux 64k memory, or save the program in several steps and pieces
with a slave disk and the monitor's move command.

Congratulations, you now have all of your protected program saved on a
normal DOS 3.3 disk. But you are not finished, since you can not simply run
any of these files. Now youn must put them all into one file and move the
pieces of memory back to where they belong.

In addition all parts of memory can not simply be re-loaded since some might
overwrite DOS. All program portions between $800 and $95FF can easily be
replaced, but the $9600 to $BFFF region must be loaded below DOS and moved
back up to where it belongs (if this memory region is needed), and then jump to
the beginning of the program.

14

This is accomplished through the use of memory moves. A memory move is a
short Assembly language program that moves portions of a program from one
part of memory to another.

Here is an example memory move program:

4A00- A2 00 LDX #$00
4A02- BD 00 08 LDA $0800,X
4A05- 9D 00 96 STA $9600,X
4A08- E8 INX

4A09- DO F7 BNE $4A02
4A0B- EE 04 4A INC $4A04
4A0E- EE 07 4A INC $4A07
4A10- AD 07 4A LDA $4A07
4A13- C9 BO CMP #$A7
4A15- DO ES8 BNE $4A00

This short assembly language program moves memory from $800-18FF up to
$9600-A6FF. Since DOS lives from $9600-BFFF, we could not just load the
memory area $9600-A6FF right from the disk using DOS. First we have to
load it into lower RAM (somewhere between $800-95FF) from a B-file and
then use the above program to move the memory back up to $9600-A6FF.

Memory Move Writer (included on the Senior PROM disk) will write this type
of memory move routine for you. Remember DOS lives from $9600-BFFF, so
you have to organize (store) required memory portions that original lived in
the $9600-BFFF memory area between $800-95FF. Then the memory move
program will move the appropriate memory back to where it belongs.

Now to put it all together. Bload the files into the appropriate place. If the
start of the program is not at the beginning of the file, we must enter the
monitor and tell the program where to jump to when the file is BRUN. For
example, lets say we have the program loaded at $800 to $7FFF, and the start
address is $4A00. This is what we would have to do after all the file sections
are loaded in the correct places:

ICALL -151
*TFD:4C 00 4A
*A964:FF (enables us to save large binary files)

Note that we enter a JMP to the memory move routine at $4A00 three bytes
before $800. This is because the jump instruction takes three bytes (4C 00 4A).

Now you can save the whole file to your disk using a standard BSAVE command:

*BSAVE WHOLETHING, A$7FD,L$7803

15

You can determine the length parameter by typing the starting and ending
pages from the monitor, separated by a minus sign. For our example, we
would type:

*80-08

and $78 will be returned. Since we want those three extra bytes for the initial
jump to the memory move routine, we need to add three to that. Hence we
arrive at a length of $7803.

BRUNing this file should restart the program and all should be fine.

Final Notes:

If your program has some additional minimal disk access for saving high score
and the like, refer to the appendix entitled "Removing Minor Disk Access" for
help with that.

Chapter 4: Modified DOS Protection.

By far the most popular protection scheme ever used is the modified DOS
protection. This scheme bases its protection upon normal DOS 3.3, but makes
some vital changes to the DOS to read a perverted disk structure To
understand this protection scheme, I will first have to deseribe how a normal
DOS 3.3 disk in formatted.

Each normal DOS disk has 35 tracks (labeled 0-34 or $0-$22 in hex) and 16
sectors per track (labeled 0-15 or $0-$F in hex). Each sector represents one
page of data (256 or $100 hex bytes). Within each sector there are two
separate fields: an address field and a data field. First let's discuss the
address field.

If you read a disk with a "nibble read" routine (use the Sector Editor's "N"
command from with the Senior PROM), you will see a disk's data in the raw
form. Secanning through the data you should see something like this:

FF FF FF FF D5 AA 96 FF FE AA AA AA AA FF FE DE AA EB
(1) (2) 3) (4)) (6) @)

FF FF FF FF D5 AA AD -342 bytes- XX DE AA EB
(8) (9) (10) a1y 12

The first few FF's (1) are known as syncbytes, and are used as separators, or
borders. The next three bytes (2) are called the address prologue bytes, and
are very important. This sequence of three bytes will not be found anywhere
else on a disk except the address field. These bytes serve as unique identifiers
to DOS so it ean find what track and sector it is reading (hence "soft
sectoring"). The data following the address markers are therefore, address
identifiers. This ineludes the disk's volume number (3), track number (4),
sector number (5), and checksum (6). The format is a little strange, and is
called 4+4 nibblizing. This format stores data in which the even bits of a byte
are stored in one 8-bit sequence and the odd bits are stored in a second 8-bit
sequence. In other words, it takes two bytes to store one byte. This was
originally done because of limitations imposed by disk drive hardware.

The address identifiers are all pretty obvious, except for the checksum. The
checksum tells DOS that everything checks out OK when reading the disk.

The next set of bytes are the address field epilogue bytes (7). These are used
to mark the end of the address field. A total of three bytes are used (DE AA
EB), but only the first two are checked when the field is read. The epilogue
bytes are really not needed, but provide added assurance that the drive is still
in syne with the bytes on the disk.

17

The next set of bytes (8) are more syncbytes which separate the address field
from the data field. The second part of a sector is the data field. The first
three bytes are the data prologue bytes (9) and they tell DOS that the data
follows. In raw form, 256 bytes of memory data is represented in 342 bytes of
disk data (10). Each disk byte represents 6 bits of a memory byte (remember
there are 8 bits to a byte). Therefore it takes 342 disk bytes to represent 256
memory bytes. Once again, this is used because of disk drive hardware
limitations.

At the end of the data is a single checksum byte (11). The checksum is a
number which when exelusive ORed with the rest of the data in a sector equals
zero. If this number does not equal zero, DOS thinks thinks something is
wrong and gives you an "I/O ERROR".

Finally, there are data field epilogue bytes (12) which also make sure the drive
is in syne with with the disk.

Now this brings us to our first and most popular protection trick: changing
the epilogue bytes of either the data and/or address fields from the standard.
This is really not a very good protection scheme. If the prologue bytes are not
changed, normal DOS ean still find the address and data fields (and knows how
long each should be), and can still read the data. An I/O ERROR will oceur
though, because the epilogue bytes can not be found to correctly mark the end
of the data.

To read a disk in which the epilogue bytes have been changed is very easy.
From with the Senior PROM RWTS menu, enter option 5, "Change Prolog
bytes". Now just press RETURN for each of the prompted values. This will
maintain the normal DOS prologue bytes, but defeat the DOS epilogue byte
error checking. You can now use option 2 (copy a disk) to copy the protected
disk.

Alternatively, you can use option 4, defeat the DOS error checking at $B942. I
would suggest this as a second choice to the previous method. The reason is
that this defeats all of DOS's error checking, and is not quite as reliable as
just defeating the epilogue byte error checking.

A program that uses this changed epilogue byte protection exclusively is
"Money Street" from Bullseye Software. But more traditionally, this mild
protection is combined with other modifications.

Another a very common protection technique is to change the address and/or
data field prologue bytes. This will immediately choke up any normal DOS
copy program and even confuses Locksmith and Essential Data Duplicator
(EDD) on occasion. This is because normal DOS can not find where the address
identifiers are, so it can not figure out what sector it is reading. Also, if the
data field prologue bytes are changed, it cannot find where the data starts.

The way to find out if any of these bytes have been changed is to do a nibble
read (using the Sector Editor's "N" command from the Senior PROM) of the
protected disk and to examine the data. Look for the landmarks as described
above. It is usually best to read a series of non-DOS tracks like track 3, 17
and 20 when doing a nibble read of a disk to make sure you get the same
results (but of course, some protectors have even used different address and
data markers for each track!).

18

Alternatively, you can load the program, reset into the monitor and examine the
DOS locations that hold the address and data field bytes. Compare them to what
they should be and note any differences.

Once you have determined what address or data field bytes have been changed, it is
a breeze to copy the disk with the Senior PROM. Just enter the Main Menu and use
Option 5 to change the Address and Data Prologue bytes. Then use Option 2 to copy
the disk.

Here is a table of locations in RWTS to check and their original values in regards to
the address and data field bytes:

Address Prologue Bytes:

47445 ($B955): 213 ($D5)
47455 ($B95F): 170 ($AA)
47466 ($B96A): 150 ($96)

Address Epilogue Bytes:
47505 ($B991): 222 ($DE)
47515 ($B99B): 170 ($AA)

Data Prologue Bytes:

47335 ($BSE7): 213 ($D5)
47345 ($B8F1): 170 ($AA)
47356 ($BSFC): 173 ($AD)

Data Epilogue Bytes:
47413 ($B935): 222 ($DE)
47423 ($B93F): 170 ($AA)

Now that you have converted a disk to a normal DOS 3.3 format, that does not
guarantee that it will work! You may have to find other routines that expect certain
address and data markers to be different than normal and modify or defeat them. If
it is a BASIC program, look for PEEKs and POKEs above 47000 and track them down.

Probably the most common "fix" is to change track 0, sector 3, byte $42 from $38 to
$18. This is actually changing location $B942 in the DOS tracks, and this one single
mod is the eqivalent of defeating the normal DOS error checking at $B942
permanently. This will easily make many programs that use modified epilogue bytes
only run, but I do not suggest it for the same reason I don't suggest copying a disk
with the DOS error checking at $B942 defeated. Use this as a last resort.

It is better to check track 0, sector 3, bytes $35 and 3F for modified data epliogue
bytes, and track 0, sector 3, bytes $91 and 9B for modified address epiloge bytes.
Then change them to the standard DOS 3.3 epilogue bytes of $DE AA. This is safer
for disk integrity.

If the program used modified prologue bytes, you will have to search for the routines
in the program's DOS tracks. Once you have found them you will have to modify or
change the routine to accept normal DOS prologue bytes. [would check track 0,
sector 2, bytes $E7, F1 and FC for modified data prologue bytes. Also check track
0, sector 3, bytes $55,

19

5F and 6A for modified address prologue bytes. If these are different than the
standard $D5 AA AD and $D5 AA 96 respectively, change them.

It should be noted that some programs change the address and/or data marker bytes
as the program runs. Examples of this are adventure games and business programs
that run from a protected disk but save the game or other data to a normal DOS 3.3
disk. In this case you must find these "byte swap" routines and defeat them or
change them so they only read or write using the normal DOS epilogue and/or
prologue bytes.

An easier and more general method of converting protected DOS disks to a normal
format is COPYB. COPYB simply uses the RWTS (read - write - track - sector)
portion of the protected DOS to read the original disk, and uses normal DOS RWTS
to write to a normal DOS disk. On the surface this is a much easier and a more
general method of deprotection than trying to figure out exactly what the disk is
actually using for prologue or epilogue bytes, but is also not as flexible. Its main
advantage is that you just save the foreign DOS's RWTS, and use it to read the
protected disk. It is best to become familiar with both methods and how to use
them.

I have devoted a appendix to the subject of using COPYB in deprotecting programs.
Please refer to that appendix for more information on COPYB.

To summarize so far, we have discussed the most popular methods of protecting a
disk using a modified DOS. This usually means modification of the address and/or
data field epilogue and/or prologue bytes. At this point, I would like to mention
modified DOS protection used in ProDOS disks.

Recently, ProDOS is being used in protection. This is really a derivative of the
modified DOS protection scheme since software publishers leave the ProDOS
operating system alone, and don't try to modify it for protection. Alternatively,
they use a SYSTEM file to incorporate their protection. An example of this is
Apple's Logo // (128k version). But of all the protection types, the ProDOS based
protection schemes most closely resemble modified DOS proteection.

The ProDOS boot process is considerably different than the DOS 3.3 boot process.
First, track 0, sector 0 is read into $800-8FF by the disk controller PROM code.
Then this code uses the disk controller PROM code as a subroutine, and reads in
track 0, sector 1 into $900-9FF.

Next the code at $800-9FF searches the ProDOS directory (on the remainder of
track 0) for the ProDOS file and loads it at $2000. This code is the ProDOS
operating system, and gets relocated into the upper 16k of RAM.

Next the director is searched for a SYSTEM file and loads the first SYSTEM file it
finds. Normally, this is BASIC.SYSTEM which contains the BASIC shell. The
original purpose of SYSTEM files was to allow ProDOS to load in any language, in
the form of a SYSTEM file (but to date Apple has only released BASIC.SYSTEM).

Since Apple periodically releases new versions of ProDOS and encourages its users
to update their disks, publishers really can't modify ProDOS like they did to DOS 3.3
for protection schemes. Instead, the protection is added to the SYSTEM file,

From what [have seen, a nibble count or some specially formatted tracks are the
protection. The whole disk is not protected so a user can update the disk to the new
ProDOS release. Maybe only one or two tracks are formatted in a perverted form
and are checked using a "nibble count” or a prologue/epilogue check routine (these
are described in the next chapter).

The defeat this type of protection involves finding the checking code and changing it

to expect normal DOS prologue/epilogue bytes, or defeating the nibble count
routine. This is explained in more detail in the next chapter.

21

Chapter 5: Modified RWTS Protection.

The modified RWTS protection is an offshoot of the modified DOS protection, but
instead of using an entire DOS, just the RWTS portion of DOS is used. Note that
this chapter overlaps chapter 4, Modified DOS Protection, in several areas.

RWTS is roughly the upper third of DOS. Many programs use only RWTS, or a portion
of RWTS because of memory limitation, better protection, or pure finesse. It is also
very easy to control disk drive access from ASSEMBLER, so it is a natural to use
RWTS calls from ASSEMBLY language programs and to ignore the rest of DOS
altogether.

Sometimes mere portions of RWTS are used in the form of a loader. A short
program (around $300 bytes) can be written to just read from a disk, thus saving
memory and also making the disk access harder to find. This is typical of many of
the older Sirius games, along with some others.

Because a loader or RWTS tends to be a short program, much of the normal DOS
error checking is defeated and forms of protection are included. For example,
perhaps a nibble count is added to the loader to check if the disk is an original. Also
very common is the address and/or data prologue or epilogue bytes are changed from
the norm.

To deprotect a program which is using a loader or RWTS can be difficult or very
easy, much like any of the other kinds of protection. Generally, you have to do
three things: By-pass the nibble count or checksum routine, modify the loader to
read normal DOS address/data headers, and copy the modified disk to a normal DOS
format and make the changes to that disk.

The first thing you will have to do is to get the data from the protected disk to a
normal DOS 3.3 format. Try defeating the epilogue byte check routine by using
option 5, "Modify Prolog Bytes". Just press RETURN for the default prologue bytes
and the epilogue byte error checking will automatically be defeated. Now select
option 2 and copy the disk.

If this doesn't work the second thing to try is to defeat the DOS error checking
routine at $B942 using option 4. Then use option 2 and try and copy the disk. This
routine sets the carry flag when ever DOS thinks it can not read a sector. DOS
monitors the earry bit, and if set, bomb out with some dumb error message.

Many times you will only have to read a portion of the protected disk, because it
does not use all the tracks. You can use option 2, "Copy a Disk, to copy any range
of tracks you wish.

As described in the previous chapter (Modified DOS Protection), you may have to
determine what the prologue and epilogue bytes being used are. Then you can use
option 5 to modify the prologue bytes and copy the disk. Beyond this, the protection
is more involved and you will have to dig for the answer....

22

After making a normal DOS copy of the protected program, it probably won't run,
and you will have to change the modified RWTS so it can read a normal DOS
format. To do this, reset from the protected program and check these locations for
anything funny (remember that RWTS normally lives from $B700 to $BFFF):

Normal
Address Value Use
$BS53 D5 Data Prologue Byte 1-WRITE
$B858 AA Data Prologue Byte 2-WRITE
$B85D AD Data Prologue Byte 3-WRITE

$BSI9E DE Data Epilogue Byte 1-WRITE
$BSA3 AA Data Epilogue Byte 2-WRITE

$BSE7 D5 Data Prologue Byte 1-READ
$BSF1 AA Data Prologue Byte 2-READ
$BSFC AD Data Prologue Byte 3-READ

$B935 DE Data Epilogue Byte 1-READ
$B93F AA Data Epilogue Byte 2-READ

$B92A DY 00 Location Checksum Compare
$B942 38 Set Carry for I/0 Error

$B955 D5 Address Prologue Byte 1-READ
$BI5F AA Address Prologue Byte 2-READ
$B96A 96 Adrress Prologue Byte 3-READ

$B991 DE Address Epilogue Byte 1-READ
$B99B AA Address Epilogue Byte 2-READ

$BC7A D5 Address Prologue Byte 1-WRITE
$BC7F AA Address Prologue Byte 2-WRITE
$BC84 96 Address Prologue Byte 3-WRITE

$BCAE DE Address Epilogue Byte 1-WRITE
$BCB3 AA Address Epilogue Byte 2-WRITE

If any are different, locate the different byte sequence on the normally formatted
version of the disk using the Sector Editor's Locate command and change the
loeations back to normal using the Seetor Editor.

Many times, this is all that is necessary, but not always. Maybe there was a "nibble
count” that will prevent the deprotected copy from running. A "nibble count" is an
overused and general term on the Apple for a routine that looks for a specially
formated track or sector. Originally it was a disk routine that read the number of
nibbles on a track, and compared it to some benchmark. If it didn't match the
benchmark, the program won't run.

The reason this was such good protection was because each track has a different
number of nibbles on it due to differences in disk drive

23

speeds. DOS compensates for these different drive speeds using "Sync Bytes", which
are written between the address and data fields. These Sync Bytes act like fillers,
allowing drive with differnce speeds read the data. Because of this, it was nearly
impossible to bit copy a disk and produce a duplicate with exactly the same number
of nibbles on a track as the original copy protected disk.

Finding the "nibble count" could be the trickiest part. Search through the program
looking for any JMP's or JRS's to the DOS area, or for any instruction codes that
turn the disk drive on or off. Beyond this it's up to you.

After you find it in memory, locate the routine on the disk (using the Sector Editor's
Locate command) and defeat it. You can do this by putting a $18 60 at the
beginning of the "nibble count" subroutine (Clear the Carry Flag, Return from
subroutine), or by "NOPing" the call (no operation) to the subroutine with three

"$E A's.

Another way to find a nibble count is to try running your converted, unprotected
version, and when the nibble count is encountered, interrupt the program and
examine memory then. Using the NMI feature of the Senior PROM can be helpful to
find the loeation of the "nibble cont" (refer to the NMI portion of the Senior PROM
manual).

In addition, the program may be using a loader that doesn't live in the $B700 to
$BFFF range. These can be tricky to find, and even tricker to make work in a
modified DOS environment.

I would first do a nibble read of the disk and find out what the address and data
prologue and epilogue bytes are. Then look for code like this:

0350- B9 8C CO LDA $CO8C,Y
0353- C9 D5 CMP #$D5
0355- DO F8 BNE $0350
0357- B9 8C CO LDA $CO08C,Y
035A- C9 AA CMP #$AD

035C- DO F8 BNE $0357

This type of code accesses the drive and compare some data header to make sure it
is the protected format. All you need to do is to find this routine on the disk, and
change the headers to normal DOS. Easy, huh?

Also try to get familiar with direet calls to RWTS. If you can recognize these, you

can usually find from where the data is being loaded from. Here is the parameter
list for using DOS from ASSEMBLY language:

24

$B7EA: Drive number to use ($01 or 02)

$B7EB: Volume number ($00 = any volume number)
$B7EC: Track number to read

$B7ED: Sector number to read

$B7F0: Lo-byte of memory page to read/write
$B7F1: Hi-byte of memory page to read/write
$B7F3: Partial sector read (O=whole Sector)
$B7F4: Command code (0=seek, l1=read ,2=write)
$B7F5: Error code (valid only if Carry Flag is set)
$B7B5: Entry point for actual read/write.

$BD00: Alternative entry point for read/write

Here is a sample program that uses these parameters:

9000- A9 04 LDA #8$03 :track 3.

9002~ 8D EC B7 STA $B7EC :store at track parm.

9005- A9 OF LDA #$0F :sector $F.

9007~ 8D ED B7 STA $B7ED :store at sector parm.

900A- A9 00 LDA #3$00 :use any volume number.

900C- 8D EB B7 STA $B7EB :store at volume parm.

900F- 8D FOB7 STA $B7F0 :use whole pages of memory (lo-byte).
9012- A9 4F LDA #$20 :page number desired (hi-byte).

9014- 8D F1 B7 STA $B7F1 :store at page parm.
9017- A9 01 LDA #$01 :command code (in this case, READ).
9019- 8D F4 B7 STA $B7F4 :store at command parm.

901C- AOQES LDY #S$E8 :set parms to use
901E- A9 B7 LDA #$B7 :parm table at $B7ES.
9020- 20 B5 B7 JSR $B7B5 :do the read.

9023~ CE ED B7 DEC $B7ED :decrement the sector.
9026~ EE F1 B7 INC $B7F1 :increment the page.
9029- AD ED B7 LDA $B7ED :compare current sector to see if

902C- C9 FF CMP #$FF :eed to reset sector and change track.
902E- DO EC BNE $901C :still on same track so go back and read.

9030- A9 OF LDA #$0F :reset sector number.

9032~ 8D ED B7 STA $B7ED :store at sector parm.

9035- CE EC B7 DEC $B7EC :decrement track.

9038- AD EC B7 LDA $B7EC :load accumulator with track number.
903B- C9 01 CMP #$01 :compare to last track - 1 desired.
903D- DO DD BNE $901C :not last track, go back and read more.
903F- 60 RTS :return to ealling subroutine.

Try and figure out what this does...This reads track 3, sector F down to track 2,
sector 0 into $2000 to $3FFF. This would be a perfect example for reading a hi-res
picture into hi-res page 1 using RWTS. Be able to recognize these routines. The
dead giveaway is the JSR $B7B5. All the parameters could have been loaded
through other locations, such as zero page loeations, then re-loaded into RWTS. The
JSR $B7B5 gives it all away!

Also notice how the routine reads sectors "backwards", or down. This is done for
speed reasons, and none other. If we incremented the sectors instead of
decrementing them, this routine would take 4 times longer to load. It does not
matter if we inerement the tracks or memory pages though...just the sectors (this
has to do with "sector skewing").

25

Chapter 6: Disabling Minor Disk Access.

Many single load programs have a small amount of disk access that you will have to
defeat in order to deprotect the program into a single file. I will give you a short
cut that should help in your efforts.

Many programs use some minor disk access to write high scores to the original disk,
or to cheeck if the original disk is still in the drive at some predetermined point. Of
course if we want to deprotect the program into a single file, we must defeat this.

A example is just about all of Penguin's $19.95 arcade games such as Spy's Demise,
Crime Wave, The Spy Strikes Back, Bouncing Kamungas and others. If you earefully
examine these programs (they can all be deprotected into a single file with no
trouble) you will find a JMP $BD00 somewhere in the code. This call to RWTS does
the disk access for their games. You can easily defeat the disk aceess by replacing
the "4C 00 BD" with "EA EA EA".

If you aren't so fortunate as to find (or know about) this RWTS eall, there is another
way to defeat their disk access. That is to replace all of RWTS with the byte
sequence "18 60". This represent a "clear the carry” and a "return from

subroutine”. This ean easily be done with a small routine that you ean put in a
deprotected single file.

Usually, I eall this routine before I do any memory moves and after all disk acecess.
The routine looks like this:

6000~ A0 B7 LDY #$B7

6002- 84 01 STY $01
6004~ A0 00 LDY #$00
6006~ 84 00 STY $00

6008~ A2 60 LDX #$60
600A- A9 18 LDA #$18

600C- 91 00 STA ($00),Y
600E- 8A TXA

600F - C8 INY

6010~ 91 00 STA ($00),Y
6012~ C8 INY

6013~ DO F5 BNE $600A
6015~ E6 01 INC $01
6017~ A5 01 LDA $01

6019- C9 CO CMP #$CO
601B- DO ED BNE $600A
601D~ 60 RTS

This routine is relocatable (will run at any address) and will wipe out RWTS ($B700
to $BFFF) with the byte sequence "18 60". Notice it uses zero page locations $00
and $01, so you should eall this routine before you move or alter any zero page
locations, or save locations $00 and $01 somewhere and then restore them after
using this routine.

26

The reason we use "18 60" is simple: "18" represents a "clear the carry". DOS
monitors the carry bit, and if set, it knows there was a /O error (obviously we don't
want the program to think there was an I/O error). The "60" returns us to the
calling routine. This has the effect of letting the program think it did the disk
access, without really doing it. Therefore, the program goes happily on its way.

The reason we wipe out all of RWTS with this routine is because we don't know
where the calling routine is jumping to in RWTS, just that it is in the RWTS region
of DOS somewhere.

This is a nice way of defeating disk access in a program even if you don't know
where the disk access is actually calling to or from!

Of course, the above routine assumes that RWTS is in its normal place of $B700 to
$BFFF. If it is not, we can change the second (2nd) byte of the routine to the
starting page of RWTS, and the fourth (4th) from last byte to the ending page of
RWTS.

For another example, you could use a similar routine to defeat the disk access in
"Mating Zone" from Datamost. In this case, the loader (RWTS) lives from $400 to
$7FF, and can be replaced with a sequence of $60's across this memory range. Then
when the program jumps to the loader in the $400-$7FF range, it encounters a "60"
(return from subroutine) and it immediately returns thinking it did the disk access!

27

Chapter 7: Examining Protected Applesoft Basic Programs.

Many protected programs are written in APPLESOFT. Of course, most publishers
are sly enough to protect against breaking out of their program with CTRL C or
reset. Also, most protect re-entering BASIC from the monitor by changing the
typical BASIC re-entry point (at $3D0) so that it points to disaster. And lastly,
many change the RUN flag vector at $D6 so if you manage to get out of their
program and into BASIC, anything you type will automatically RUN their BASIC
program. This chapter describes how to beat all these protection schemes using the
Senior PROM.

First, we must determine if the protected program is written in APPLESOFT. If
after you boot the program a BASIC prompt appears, this is a good indicator that at
least some of the program is written in BASIC. Furthermore, if the program prints
a lot of text on the screen, or requires a good deal of user inputs, it is a good guess
that the program is written in BASIC. The reason for this is that printing text on
the sereen and inputing data from the keyboard are easily accomplished from BASIC
using PRINT and INPUT statements. To do this from ASSEMBLY language requires
a great deal more work. Also, we should realize why a programmer uses ASSEMBLY
language. The only real advantage to ASSEMBLER is speed. If speed is not critical,
most (non-sadist) programmers will use BASIC,

With this in mind, look at how the program runs and prints on the sereen. If it runs
at about the same speed as the BASIC programs you have written run, it is a good
guess that it is in BASIC. Remember, ASSEMBLY language is considerably faster
than BASIC in every respect.

Finally, read the package the program came in. It usually says what it was written
it. If it doesn't, a dead giveaway is in the hardware requirements. If the program
requires APPLESOFT in ROM, then at least part of the program is probably written
in APPLESOFT.

Now that you have figured out your protected program is written in BASIC, it is
time to LIST their code. The first step is to interrupt the program when it is
running. To do this, deactivate the Senior PROM and press Reset. Now move the
toggle switch to the middle transparent position, and boot the protected Basic
program. Then at the strategic moment, press the NMI button, and use the Senior
PROM as desire (save memory and create a Resurrect disk, or enter the Monitor,
ete.).

It is important to use the middle transparent switch position and the NMI button
only to interrupt a basie program. The reason is if you activate the Senior PROM,
the Basie program will immediately halt, limiting some of your Senior PROM
snooping abilities. This is because BASIC has been replaced with the many utilities
within the Senior PROM when the Senior PROM is activated. You are actually
pulling the BASIC interruptor out from under the BASIC program, which will usually
break you into the monitor or freeze the program.

Thisis NOT TO SAY that when you active the Senior PROM you will lose the BASIC
program in memory. On the contrary, you only lose the BASIC interpretor in ROM,
and not the BASIC program in RAM.

Now you can try to enter the immediate BASIC mode by deactivating the Senior
PROM switch and typing:

*[RETURN] (press the RETURN key)
*3D0G

This is the normal BASIC re-entry point, but if the protection is worth anything, this
will not work.

Assuming that it didn't work, reload the program and reset into the monitor again
using the Senior PROM, and then press RETURN. Deactivate the Senior PROM and
then type "9D84G" or "9DBFG" instead of "3D0G". These are the DOS cold and
warm start routines, respectively. If you are lucky enough to get a BASIC prompt,
you have done well. Most of the time, you won't.

If in either case you succeed in getting a BASIC prompt, try LISTing the program or
CATALOGing the disk.

Remember you must alwasy deactivate the Senior PROM before trying to re-enter
Basic!

If anything you type starts the program running again, the protection has changed
the RUN flag at $D6. The RUN flag is a zero page location (at $D6) which will run
the BASIC program in memory if $D6 contains $80 or greater (128 or greater in
decimal). This is easy to defeat after you have reset into the monitor by typing:

*D6:00

This resets the RUN flag to normal. Now if 3D0G, 9D84G or 9DBFG previously
rewarded you with a BASIC prompt, this will solve the problem of the program
re-running when you type a command.

In protection schemes, the RUN flag is usually changed from within a BASIC
program by issuing the code:

10 POKE 214,255

or by poking location 214 with anything greater than 127. From ASSEMBLY
language, the code would most likely look like this:

800- A9 FF LDA #$FF
802- 85 D6 STA $D6

or by loading any register with $80 or greater and storing it at $D6.

If 3D0G, 9D84G or 9DBFG did not produce a BASIC prompt, then the DOS being
used is more elaborate. Load the program and reset into the monitor after it is
running.

Now comes the final steps in trying to examine BASIC programs. Boot the suspect
program and use the Senior PROM to enter the monitor. Reset the RUN flag to
normal, just to be sure. Type:

*D6:00

29

Now deactivate the Senior PROM switch and press the RETURN key. This will
activate BASIC. Then type:

*[CTRL C]

You should see an APPLESOFT prompt. Now type:

JLIST

and your APPLESOFT program should now appear.

Applying this to a real world example, try this method with one of Strategic
Simulations releases (SSI). SSI uses a highly modified DOS called RDOS for their
protection. SSI uses all the tricks mentioned to prevent you from LISTing their
programs. But using the above procedure, you can LIST their BASIC programs.

In addition, the DOS used by SSI (RDOS) uses the ampersand in all of its DOS
commands. So if you see any ampersands from within their BASIC program, you
know they are DOS commands. For example, to catalog a SSI disk, after you follow
the above procedure and you are in BASIC, type:

I&CAT

This will display SSI's catalog.

If you want to save an APPLESOFT program to a normal DOS disk, do these steps:

1) Reset into the monitor after the program is running, using the Senior PROM as
described earlier

2) Now type:

*D6:00
#*9500<800.8FFM

3) Check where the APPLESOFT program ends by typing:
*AF.BO
4) Write down the two bytes listed.

5) Deactivate the Senior PROM and boot a 48K normal DOS 3.3 slave disk with no
HELLO program.

6) Enter the monitor by typing:

ICALL-151

7) Restore the APPLESOFT program by typing:
*800<9500.95FFM

*AF: enter the two bytes you wrote down here, separated by a space.

30

8) Enter BASIC and save the program by typing:

*3D0G
ISAVE PROGNAME

What you have done is to move $800 to $8FF out of the way so you can boot a slave
disk. After normal DOS is up, you restore $800 to $8FF from $9500 to $95FF, and
then restore the end of APPLESOFT program pointers so DOS knows how big your
BASIC program is. Next you just save it to your disk. Of course there are other
more automated ways of getting programs to a normal DOS 3.3 disk, but this is a
quick and dirty method that will almost always work. Keep in mind that the
program may not run from normal DOS because of more secondary protection from
within the BASIC program itself. Any curious CALLs, POKEs or PEEKs to memory
above 40192 (this is memory where DOS resides) or below 256 (zero page memory)
should be examined closely.

This should help you learn more about the protected programs you own that are
written in APPLESOFT.

31

Chapter 7: Using COPYB to Convert Protected Disks to Normal DOS Format.

There are probably hundreds of ways to protect a program from being copied, and
the most common is using a Modified DOS protection scheme. The classic program
for dealing with modified DOS's is DEMUFFIN PLUS. It works much the same way
as Apple's MUFFIN program works. MUFFIN was written to read files from a DOS
3.2 disk and then write them to a DOS 3.3 disk. DEMUFFIN was a variation of
MUFFIN, allowing the hardcore 3.2 user to copy files from DOS 3.3 to DOS 3.2.
DEMUFFIN PLUS operates on the same prineiple, but uses whatever DOS is in
memory to read the disk, and then writes out to an initialized DOS 3.3 disk uses
normal DOS 3.3. While this is a powerful utility, it only works with programs that
are based on DOS file structures and that have a catalog track.

COPYB (originally written by "Krakowiez") is a highly modified version of COPYA
which converts a protected disk with a modified DOS and/or RWTS to normal DOS
3.3 format. The protected disk may have a normal DOS file structure, or it may
not. Since COPYB copies on a track by track basis, this does not matter. This
makes COPYB a far more flexible tool than DEMUFFIN PLUS.

COPYB uses the protected disk's RWTS to read in the tracks and then uses normal
DOS 3.3 to write them back out to an initialized disk. Unless otherwise instructed,
COPYB copies track $03 to track $22, sector $0F to sector $00 of each track. Here
are the internal parameters for COPYB:

Location Normally
Hex Dec Description Hex Dec Note
$22E 558 First track to read $03 03 @
$236 556 First sector to read $OF 15 (2
$365 869 Reset sector number $OF 15 @
$3A1 929 Stop on error ($18=NO) $38 56 (3
$302 770 Track to stop reading+1 $23 3B @
$35F 863 Track to stop reading+1 $23 3B @

1) This is the first track that COPYB reads. This is normally set at track 3, so not
to copy the protected DOS which normally resides on track O through track 2.

2) These two parameters are normally set to $OF for 16 sector disks. Change these
two parameters to $0C for 13 sector disks. Most of today's protection schemes are
based on 16 sectors, yet there are still a few using 13 sectors (such as Muse).
I[nterestingly enough, there is a handful of authors that also us sectoring other than
13 or 16 sectors per track. An example of this is "Thief" from Datamost. This
program uses 11 sectors per track. COPYB can also accommodate these programs.

3) This parameter is normally set so that upon reading a 'bad sector' COPYB will
stop and display an error. To let COPYB keep going after a read error, change this
byte to $18 (24 in decimal). The equivalent sector on the copied disk will be written
blank.

32

4) These two parameters determine where COPYB will stop reading the protected
disk. Normally, this is set to the last track, $22 (34 in decimal), plus one. To
change this, add one to the last track you want to copy and change these two
parameters.

Using COPYB:

To use COPYB, you must capture the foreign RWTS and put it at locations $8000
through $88FF. You can do this one of two ways:

1) Boot the protected disk and after the foreign DOS is loaded, reset into the
monitor. The foreign DOS will usually be loaded a few seconds after the boot
starts. You ecan tell this because many times a BASIC prompt will appear at the
bottom of the text sereen. Use the monitor move command to move RWTS down to
$8000 as so:

*8000<B700.BFFFM

Now boot a 48k slave disk (this will not destroy memory from $900 to $95FF) and
run COPYB.

2) Alternatively, read in track 0, sector 1 through track O sector 9 of the protected
disk into memory $8000 to $88FF with the Sector Editor. Then run COPYB.

Running COPYB and Entering the Parameters:

Run COPYB by typing:
IRUN COPYB

The program will come up and ask what parameters to use, all deseribed above.
COPYB will poke in the values for you. Enter all values in DECIMAL.

After entering the parameters, you will be asked if your selections are correct. If
you answer YES, the next set of prompts will appear, which should look familiar.
Enter the original and destination drive and slot numbers, just as in COPYA. Lastly,
you will be asked if you want the destination disk to be initialized, respond yes or
no. Now press the RETURN key to start the copy.

When the copy is completed, assuming all went correetly, you will have a normal
DOS 3.3 version of your protected disk which may run or be examined and changed
more easily then the original disk.

This method of deprotection is more dependable that using DEMUFFIN PLUS and
covers more types of programs. You will find COPYB an excellent utility to have.

33

	Cover
	Table of Contents
	Chapter 1: Introduction to Deprotection
	Chapter 2: Where to Begin
	Chapter 3: Deprotecting Single Load Programs
	Chapter 4: Modified DOS Protection
	Chapter 5: Modified RWTS Protection
	Chapter 6: Disabling Minor Disk Access
	Chapter 7: Examining Protected Applesoft BASIC Programs
	Chapter 8: Using COPYB to Convert Protected Disks

